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Disclaimer

I studied condensed-matter physics as an application of a
new set of techniques known as “Geometric Transition”
that arise in High-Energy Physics, Differential Geometry
and Algebraic Geometry. Hence, my presentation might be
quite different than what an experimental condensed-matter
physicist might present. I will try to present as many
experiments as I can, but by no means is this presentation
complete!
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What is Condensed-Matter Physics?

Condensed-Matter Physics is the study of matter that is in the
condensed phase — Matter which is not gaseous.
One can define a gaseeous phase in many ways, with a simple
way being defined by the container that a gas is kept in. A gas
can theoretically expand to an arbitrarily large volume.
The phases were first quantified when Bernoulli (and later
Maxwell and Boltzmann) realized that the three ’generic’ phases
of matter can be separated by their RMS velocities. Gases have
the highest velocities, while solids have the lowest
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Moving to the future

In the 21st century, the theory of solids was probed with the
help of X-ray diffraction and for all intensive physics purposes,
the physics of solids is considered a solved problem
One of Albert Einstein’s famous 1905 papers was entitled On
the molecular-kinetic theory of heat required by the movement
of particles suspending in liquids at rest. In this paper, Einstein
makes the first connection between the Maxwell-Boltzmann
Distribution (which describes the probability distribution of ’rest’
velocities), Brownian motion and many-body physics



Condensed-
Matter Physics:

Inscrutably
alluring to
Physicists,

Chemists and
even

Mathematicians

Tarun Chitra

Moving to the future

In the 21st century, the theory of solids was probed with the
help of X-ray diffraction and for all intensive physics purposes,
the physics of solids is considered a solved problem
One of Albert Einstein’s famous 1905 papers was entitled On
the molecular-kinetic theory of heat required by the movement
of particles suspending in liquids at rest. In this paper, Einstein
makes the first connection between the Maxwell-Boltzmann
Distribution (which describes the probability distribution of ’rest’
velocities), Brownian motion and many-body physics



Condensed-
Matter Physics:

Inscrutably
alluring to
Physicists,

Chemists and
even

Mathematicians

Tarun Chitra

QM, for the win

With the advent of Quantum Mechanics in the 1920s, theorists
began to tackle the physics of solids with their newfangled tools
Theory of solids was ’finalized’ by physicists such as Felix Bloch
and Léon Brillouin. Enrico Fermi made important contribution
to the theory of Fermionic gases
Liquid state, other phases of nature left out from this early-20th
century boom in solid-state physics
1978: APS changes the name of ’Solid-State Physics’ to
’Condensed-Matter Physics’
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Active Areas of Research in Condensed-Matter
(C-M)

Superfluidity and Supersolidity
Superconductivity
Protein Physics
Supercooled Liquids
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So. . . How does one formulate problems in C-M?

Condensed-Matter Physics involves the study of systems with
lots of particles. Forget the three-body problem — consider the
1022-body problem

Solid-state systems: Mathematically ’easy’ because solids have a
definite, static atom density that they can be approximated by a
lattice. Lattice discretizes phase space and real space, enforces
periodicity conditions.
The liquid phase and various non-classical phases tend to be
much more difficult to study – cannot force a lattice structure
on a liquid and various non-classical phases need not be
homogeneous.
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All hope is not lost!

Even without a nice atomic-level description of all liquids, scientists
have been fairly adept at studying liquids macroscopic since the time
of the Bernoullis. Two key ingredients to studying liquids:

1 Approximate liquids as a ’limiting’ phase of solids and/or gases.
Classical fluid dynamics: a liquid is a solid that ’deforms’ easily
Early QM: Fermi liquids are ideal Fermi gases (e.g n-body
systems with a non-interacting, SO(3)-invariant potentials)
which are perturbed by an attractive interacting potential.

2 Elucidate the symmetry-breaking that takes place in a liquid. The
theory of solids is particularly nice because the system has quite a bit
of symmetry; if we can figure out which symmetries of a solid still
apply to liquids, then we can ’naturally’ write down a Lagrangian for
a liquid system
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Basic Mathematical Framework: Lattices

Let’s become a lot more formal with the definitions of the past
few slides.1

Definition
An lattice L in Rn is a set of Z-translates of a basis {~ei}n

i=1. That is,
L =

{∑n
i=1 ai~ei

∣∣ ai ∈ Z}. A cell is any Zn-translate of the
parallelpiped spanned by {~ei}n

i=1 (the unit cell)

In solid-state physics, we assume that virtually all systems can
locally be described by a lattice. By construction, a lattice
admits a free, transitive Zn-action which means that one need
only study physics in the unit cell Span(~e1, . . . ,~en) and then use
the Zn-action to translate the dynamics to any other cell. This
is analogous to the setup for the NT algorithm that Anton relies
on.

1There are far more general definitions of a lattice such as:
’Any discrete subgroup Γ of a Lie Group G such that G/Γ has finite Haar measure’
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Basic Mathematical Framework: Symmetries

So what is a symmetry? To answer that we need to recall a bit
of classical mechanics
Let’s recall that informal statement of Hamilton’s Principle of
Least Action: ’Particles are lazy, they want to take the shortest
possible path while expending the least energy’
How do we formalize this? One way is to use a Lagrangian.

Physically, a Lagrangian L is fairly simple to define:
L =

∑
{Kinetic Energy Terms} −

∑
{Potential Energy Terms}

We need to define the arguments of a Lagrangian: Particle’s
path x(t), velocity ẋ(t) and possibly an explicit dependence on
time t and further spatial and time derivatives
Formal definition: A Lagrangian is a C∞ map between an
n-manifold M and a target manifold T (usually R,C,H or C2n or
the cotangent bundle of any symplectic manifold)
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’Physicists can’t get enough action’ — TBK

So now we need some way to define ’the shortest possible path
that costs the least energy’ in a way that is manifestly
compatible with Newton’s Laws
Introducing the action S. Mathematically, the action is defined
as S =

∫
R L(x(t), ∂αx(t), ∂α∂αx(t), . . . , t)dt

Hamilton and Lagrange showed (in different ways) that by
minimizing the Lagrangian with respect to its arguments, one
could obtain a particle’s path x(t) and velocity ẋ(t) that is
consistent with what one would expect from Newtonian
mechanics. This makes life a lot easier, because for a lot of
problems it is much easier to ’guess’ kinetic and potential
energies as opposed to computing all forces
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Actions and Symmetry

Action: S[x(t), ẋ(t), t].
Since x(t), ẋ(t) ∈ R3, any group that acts freely/transitively on R3

can act on the trajectories (pointwise). Representation of G :
Λ : G → Aut(R3). G generates a symmetry of S if:

S[x(t), ẋ(t), t] = S[Λ(g)x(t),Λ(g)ẋ(t), t] ∀g ∈ G

Minimizing the action stems from a somewhat empirical consideration
— in many classical physical systems, the time expectations of
kinetic and potential energy were approximately equal. That is,

Et [T (ẋ)] ≈ Et [V (x , ẋ)]
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kinetic and potential energy were approximately equal. That is,
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Noether’s Theorem (Physics Version)

What about conservation laws? How do we force Lagrangian
mechanics (as vaguely defined) to have conservation laws
Noether’s Theorem (Emmy Noether, 1918): ’For every
symmetry of an action, there exists a conserved quantity
associated to the symmetry.’ In classical mechanics this quantity
is the conserved momentum:

P(x, ẋ) =
∑

i

∂L
∂ẋi

Ki (x))

where Ki (q) is the linear ’component’ (think Taylor’s theorem)
of the symmetry (e.g. Λx = x + εK(x))
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∂ẋi

Ki (x))

where Ki (q) is the linear ’component’ (think Taylor’s theorem)
of the symmetry (e.g. Λx = x + εK(x))



Condensed-
Matter Physics:

Inscrutably
alluring to
Physicists,

Chemists and
even

Mathematicians

Tarun Chitra

Example

Consider the Lagrangian for throwing a ball up in the air,
L = m

2
(
ẋ2 + ẏ 2 + ż2)−mgz . This is invariant under translations of

x , y , e.g. x 7→ x + ε, y 7→ y + ε′. These two symmetries generate two
different conserved momenta (one with Kx = 1,Ky = Kz = 0 and the
other with Ky = 1:

P1(x , y , z , ẋ , ẏ , ż) =
∂L
∂ẋ Kx +

∂L
∂ẏ Ky +

∂L
∂ż Kz = mẋ (1)

P2(x , y , z , ẋ , ẏ , ż) =
∂L
∂ẋ Kx +

∂L
∂ẏ Ky +

∂L
∂ż Kz = mẏ (2)
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∂ż Kz = mẋ (1)
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Noether’s Theorem (Math Version)

Hamiltonian System (M, ω,H): Symplectic manifold (M, ω)
with Hamiltonian H ∈ C∞(M). Every Hamiltonian H gives rise
to a Hamiltonian Vector Field, XH = ω−1(dH).
Infinitesmal Symmetry: Smooth vector field V ∈ Γ(M,TM)
with flow θ : D → M such that LXHω = ω, θ∗H = H.
Conserved Quantity: f ∈ C∞(M) such that f is constant
along any integral curve (read: trajectory) of XH . Also defined
as f ∈ C∞(M) 3 {H, f } = 0.

Theorem
(Noether) If f ∈ C∞(M) is a conserved quantity, then its
Hamiltonian vector field Xf is an infinitesmal symmetry. Conversely if
H1(M;R) = 0, then every infinitesmal symmetry is the Hamiltonian
vector field of a conserved quantity.
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Symmetries of Lattices

Set of isometries (distance-preserving) maps = physical intuition
that rotation/translation of coordinate system shouldn’t affect
the physics. Distance-preservation is req’d to ensure that one
doesn’t change an energy functional, as most energy functionals
require a metric.
What are the isometries of a cubic unit cell? Hint: It’s not a
dihedral group, but it decomposes similarly (has a subgroup of
reflections ∼= Z2)

Proper Rotations (24): Identity rotations about an axis from
center to face, rotation about an axis from the center of an
edge, to an opposite edge, rotation about a body diagonal
Rotation Plus a Reflection (24)
Math: Isometry Group of Cube: BC3 ∼= S4 o Z2 is the 3rd
Coxeter Group, with Coxeter-Dynkin Diagram, te t t4
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Other types of lattices

But what if they’re not orthonormal? Bieberbach proved what
physicists already knew: There are only a few types of crystal
structures:
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Symmetry-breaking and Lattices

Intuitively a lattice is ’different’ from an arbitrary particle
because it is ’rigid’. How can symmetries help us quantify this?
First things first: What are the set of isometries of a single,
thermally-isolated, classical particle that is sitting in a vacuum
Rn?

Rotations — Represented in n-dimensions by the Lie group
SO(n)
Translations — represented by Rn, treated as Abelian group
under addition

These are differentiable symmetries, as the sets of rotations and
translations turn out to be Lie groups and hence smooth
manifolds (so that differentiation can be defined).
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The Poincaré Group

This total set of symmetries of a free particle is known as the
Poincaré Group P(Rn). However, note that P(R3) 6∼= SO(3)×R3

and in general, P(Rn) 6∼= SO(n)× Rn for n > 1. To see why
consider two rotations and translations
(R, y), (R̃, ỹ),R, R̃ ∈ SO(3), y, ỹ ∈ R3. A rotation plus
translation acts on a vector x ∈ R3 as (R, y) · x = Rx + y.
Hence we have:

(R, y) ∗P (R̃, ỹ) · x = (R, y) · (R̃x + ỹ)

= RR̃x + R ỹ + y = (RR̃,R ỹ + y) · x

Hence we have P(R3) ∼= R3 oϕ SO(3) where oϕ is the
semi-direct product with respect to ϕ : SO(3)→ Aut(R3)
defined as ϕ(R)(y) = Ry
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(R, y) ∗P (R̃, ỹ) · x = (R, y) · (R̃x + ỹ)
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Symmetry-Breaking

Now we can define symmetry-breaking: When dynamics force a
physical system to have a smaller group (subgroup) of the static
symmetries.
Physical system on Lattice: We can think of our system as
embedded in R3, but with a much smaller symmetry group (e.g.
BC3 oϕ Zn)
Practical Implementation:

Start with a Lagrangian with a lot of symmetry Ls and solve for
the trajectory/dynamics
Perturb Ls with a non-symmetric Lagrangian, Lp by trying to
compute the dynamics of L = Ls + εLp , ε > 0, ε� 1.
Likely: You will be unable to solve the Euler-Lagrange equations
for this Lagrangian. Using Taylor’s Theorem repeatedly (and I
mean repeatedly) will make the new approximate solution for L
depend heavily on the solution for Ls
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Example of Symmetry-Breaking: Superfluidity

Physics: Liquid 3He has no viscosity (or creep) at T < 3mK. As
such, there exist at least three phases of matter of 3He. This is
a quantum phenomena, so we need to consider spin.
Symmetry: Local SO(3)× SO(3)× U(1) symmetry [Should
remind you of the Standard Model, SU(3)× SU(2)× U(1)!!]
Lagrangian density for Free Energy (Lagrangian of Superfluid
3He, Phys. Rev. B, 37(7), S. Theodorakis):

L = k1[Ω∗µ`Ωµ`] + ik2[Ω∗µ`Aµ` − Ωµ`A∗µ`] + k3HµεµνσAvi Ω
∗
σi

+ k3HµεµνσA∗νi Ωσi − Fd − Fmag + g S2

2
r

Symmetry-breaking: Contributions from A,Ω are invariant under
SO(3)× SO(3)× U(1); Fd ,Fmag are not. They contribute to an
energetically unfavorable liquid state at low T
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+ k3HµεµνσA∗νi Ωσi − Fd − Fmag + g S2

2
r

Symmetry-breaking: Contributions from A,Ω are invariant under
SO(3)× SO(3)× U(1); Fd ,Fmag are not. They contribute to an
energetically unfavorable liquid state at low T
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